A Locally-Continuous Meshless Local Petrov-Galerkin Method Applied to a Two-point Boundary Value Problem
نویسندگان
چکیده
منابع مشابه
Imposing boundary conditions in the meshless local Petrov–Galerkin method
A particular meshless method, named meshless local Petrov–Galerkin is investigated. To treat the essential boundary condition problem, an alternative approach is proposed. The basic idea is to merge the best features of two different methods of shape function generation: the moving least squares (MLS) and the radial basis functions with polynomial terms (RBFp). Whereas the MLS has lower computa...
متن کاملDiscrete Mixed Petrov-Galerkin Finite Element Method for a Fourth-Order Two-Point Boundary Value Problem
A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order linear ordinary differential equation. After employing a splitting technique, a cubic spline trial space and a piecewise linear test space are considered in the method. The integrals are then replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error estimates are obtai...
متن کاملA Domain Decomposition Method Combining a Boundary Element Method with a Meshless Local Petrov-Galerkin Method
A non-overlapping domain decomposition algorithm combining boundary element method with meshless local Petrov-Galerkin method is presented for solving the boundary value problem with discontinuous coefficient in this paper. The static relaxation parameter is employed to speed up the convergence rate. The convergence range and the optimal value of static relaxation parameter are studied, but the...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Latin American Journal of Solids and Structures
سال: 2020
ISSN: 1679-7825,1679-7817
DOI: 10.1590/1679-78256021